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sional reductions, generalizing Witten’s classification of strings in SYM. In particular 4d

N = 2 SQCD softly broken to N = 1 contains torsion (Douglas-Shenker) ZN -strings and

nontorsion (Hanany-Tong) Z-strings. Some of the former are stable when the flavor sym-

metry is gauged, while those that are not stable confine quarks and in some vacua even

dyons into baryons. The nontorsion strings are stable if and only if all colors are locked

to flavors, which is weaker than the BPS condition. As a byproduct unstable string decay

modes and approximate lifetimes are found. Cascading theories have no vortices stabilized

by the topological charges treated here and in particular Gubser-Herzog-Klebanov axionic

strings do not carry such a charge.
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1. Introduction

During the past year a number of objects of have been discovered in N = 1 supersymmetric

gauge theories, such as boojums at the interface of vortices and domain walls [1, 2] and an

axionic string [3]. Besides the new axionic string a number of other strings are known to

exist in this theory, such as the torsion (Zn) charged generalizations of Douglas-Shenker

strings [4, 5] in pure SYM, the nontorsion (Z) charged and BPS strings of refs. [6 – 10] and

the non-BPS strings of refs. [11 – 16] which are thought to be unstable and so carry no

conserved charges. This wide variety of known strings leads one to wonder whether even

more strings await discovery.

In this note we will use M5-brane constructions of various N = 1 and N = 2 su-

persymmetric gauge theories to find a classification of the conserved charges carried by

the unconfined and stable massive matter in these theories in terms of the topology of

the configuration. We will consider matter that arises from the dimensional reduction of

M2-branes, although some instantons come instead from momentum modes about nontriv-

ial cycles in the spacetime. M2-branes can only end on M5-branes, and so, generalizing
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Witten’s classification of Douglas-Shenker strings in pure super Yang-Mills [17, 18], matter

charges correspond to worldvolumes of M2-branes with boundaries on the M5-brane. We

will argue that the topological charges are valued in the relative homology groups Hk(M,Σ)

where M is the internal spacetime manifold, Σ is the embedding of the M5 in the internal

space, and k = 1, 2 and 3 for strings, particles and certain instantons respectively. If a

string carries a conserved charge then there is no matter in the theory on which that string

can end, and so the corresponding string charge will necessarily not be screened. There

may be matter on which two strings carrying conserved charges can end, but such matter

does not screen the charge of the individual strings, instead it screens the difference in

charges of the two strings.

The charge groups will first be calculated for pure super Yang-Mills with a polynomial

superpotential that breaks the gauge symmetry from U(N) to a product of U(Ni)’s. Here

we will see that the only topologically stable (not screened) strings are Douglas-Shenker

strings which are charged under a single torsion group ZK where K is the confinement index

of ref. [19]. In addition there will be various ’t Hooft-Polyakov monopoles and dyons, as

well as W bosons which will usually be confined. The fact that these particles are confined

by torsion charged strings means that there will be finite combinations of particles that will

be unconfined, leading to a rich spectrum of stable electric, magnetic and mixed glueballs

with masses proportional to the various Higgs VEVs.

When fundamental matter is added the Douglas-Shenker strings become unstable, they

may decay via the nucleation of quark-antiquark pairs and correspondingly the relative

homology group that classifies them vanishes. The strings may still be quite long-lived if a

large bare mass is given to the quarks, and they are still physically relevant as they confine

the quarks into baryons. One may try to save some Douglas-Shenker strings by making

some of the bare quark masses degenerate, in which case the relative homology group

becomes nontrivial, or more precisely becomes dependent upon the way the topology at

infinity is treated. However under an arbitrarily small perturbation this degeneracy is

destroyed, and so we claim that the strings may decay. That is, the physics determines

the kind of homology used. On the other hand one may make the degeneracy stable

against small fluctuations by gauging the flavor symmetry, and we will see that in some

such theories there are vacua with stable Douglas-Shenker strings. However in cascading

theories and more generally in baryonic vacua it appears as though the corresponding

homology group is trivial and so no strings carry the topological charge classified by this

group.

In the presence of fundamental matter there are supersymmetric configurations in

which the M5-brane may have two connected components, or even more for some theories

that in the UV already have several gauge groups. We will see that the homology group

classifying strings contains a number of Z factors equal to the number of components

minus one. For example, in SQCD with a FI term one finds, as has been demonstrated

already in refs. [6, 7] in three and four dimensions, stable BPS vortices. If one introduces a

superpotential then these vortices are generically no longer BPS, although supersymmetries

may appear in the worldsheet theory that were not present in the bulk theory [20]. However

for any superpotential polynomial in the adjoint chiral multiplets the M5-brane will remain
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disconnected if the FI term is nonzero, and so even when they are non-BPS we claim that

these vortices will be absolutely stable.

On the other hand vortices of the type studied in refs. [11 – 16] correspond to con-

nected M5-branes and so may decay via monopole-antimonopole creation. An FI term is

not required for the stability of these vortices. Instead we will see that vortices created

from superpotentials alone will be stable whenever every color is locked to a flavor by a

nonvanishing meson VEV, or equivalently when all monopoles are confined by either 0 or

2 vortices. We will also argue that the axionic vortices of ref. [3] come in two varieties and

both are always unstable.

In this analysis we treat the spacetime and the M5-brane embedding classically. This

supergravity limit may be different from the limit in which the dimensionally-reduced

theory of interest is obtained. Thus calculations of tensions and lifetime should be inde-

pendently verified in the theories in question when they are not protected by nonrenor-

malization theorems. However the topological charges computed in this note, at least in

the examples that we know, survive the change of limits despite the fact that many of the

stable objects are not BPS.

In section 2 we argue that in general the relative homology of the M5-brane embed-

ding is a group of conserved charges and we review an exact sequence which will be used

repeatedly throughout the paper to calculate the relative homologies in examples. In sec-

tion 3 we describe a simple example, M-theory compactified on a 2-torus on which three

M5-branes are wrapped. This gives a dimensional reduction of 5-dimensional U(3) pure

super Yang-Mills, which consists of N = 4 4-dimensional U(3) super Yang-Mills coupled to

a U(3) lower-form gauge theory with a zero-form connection and a one-form field strength.

The various M2-branes connecting the M5-branes correspond to the stable objects known

to exist in the gauge theory plus those of the 1-form theory. Next in section 4 we extend

this analysis to N = 2 pure super Yang-Mills, or more precisely flavorless MQCD, by com-

pactifying M-theory on a single circle and considering an M5-brane embedding given by

the logarithm of the corresponding Seiberg-Witten curve [21]. A superpotential is added,

softly breaking the supersymmetry to N = 1, in section 5 and a number of examples are

considered. Finally in section 6 flavored matter is added, and both global and local fla-

vor symmetries are considered. Gubser-Herzog-Klebanov strings are described in the IIA

theory, but the calculation of conserved vortex charges shows that they do not carry any

conserved charge of the kind classified here.

2. Charges from relative homology

Consider M-theory on an 11-dimensional spacetime of the form R
1,d ×M where the gauge

theory of interest lives on the spacetime R
1,d and M will be referred to as the internal

space. All of the results in this paper extend equally well to the case in which R
1,d is

replaced by an arbitrary (d+1)-dimensional manifold. We will be interested in the low

energy theory of an M5-brane that fills the gauge theory R
1,d and sweeps out a (5 − d)-

manifold Σ ⊂ M . In general Σ and even M may depend upon the position in the physical

spacetime R
1,d, for example SQCD and SYM contain domain walls that separate regions
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with topologically distinct embeddings. In this note we will consider a region of spacetime

in which the topology of the embedding of the M5 in the internal space is constant.

We will now describe a classification of topological charges carried by M2-branes whose

boundaries lie entirely on the M5-brane. M2-brane boundaries can only lie on M5-branes

because the supergravity 7-form current ∗G4 +C3∧G4 is gauge-invariant and in particular

globally defined. This means that it is annihilated by the square of the exterior derivative.

Identifying dG4 and d ∗ G4 with the M5-brane and M2-brane charge densities ρ5 and ρ2

respectively the gauge-invariance of the 7-form implies

0 = d2(∗G4 + C3 ∧ G4) = dρ2 + G4 ∧ ρ5 + C3 ∧ dρ5 (2.1)

where the gauge invariance of G4 implies that dρ5 vanishes. The boundary of an M2-brane

is characterized by the nonvanishing of dρ2, but Eq. (2.1) implies that when dρ2 is nonzero

ρ5 is also nonzero and so there must be an M5-brane at the M2’s boundary. Of course this

argument does not apply at the end of the world where derivatives are not defined, but we

will restrict our attention to spacetimes with no boundaries.

If the spacetime is geometrically a product of R
1,d × M , as it will be for the gauge

theories of interest far from a domain wall, we may deform the worldvolume of each M2-

brane into a number of components each of which is a product of a submanifold of the

internal space and a submanifold of the gauge theory spacetime. For example a diagonal

line can be deformed into a straight horizontal and a straight vertical line without changing

its topology. We will see that such composites of products correspond to composite objects

in the gauge theory, for example, monopoles with vortices attached. We will then classify

each product manifold separately.

Strings of tension T correspond to M2-branes that extend in two gauge theory space-

time directions while the third is a line segment in M of length T bounded by the M5-brane.

Similarly particles of mass M correspond to M2-branes that extend in one gauge theory

spacetime direction while the other two sweep out an area M surface bounded by a col-

lection of curves in the M5. M2-branes that correspond to instantons are extended in no

gauge theory spacetime directions and an internal 3-manifold bounded by a collection of

surfaces in the M5.

However there are also composite configurations, in which, for example, the 2-dimen-

sional sheet corresponding to a particle has one boundary not on the M5. Such a bound-

ary is a 1-dimensional line corresponding to a vortex which, as the M2 is everywhere

3-dimensional, continues into a spacetime direction. That is, while the M2 can only end

on the M5 it may, now that we have distorted it into product submanifolds, have corners

in which it turns into a spacetime direction. In the dimensionally reduced theory this con-

figuration appears to be a particle with a vortex ending on it, in other words this particle

is confined and the vortex charge is screened. In general a particle is confined by a number

of vortices equal to the number of components of the boundary of the corresponding sheet

that are not on the M5-brane, which in SQCD may be 0, 1 or 2 [22]. We are classifying

unconfined objects, and so we are searching for a group of charges that corresponds to

surfaces with boundaries only on the M5.
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M2−Brane
(2−Monopole)

M2−Brane

M2−Brane
(Vortex)

The Internal Space

2−Monopole

0−Monopole

Vortex

The Gauge Theory Spacetime

(Vortex)

M5−Brane

(0−Monopole)
M2−Brane

Figure 1: One M2-brane is bounded by an M5, while another has two boundary components on

the M5 but also extends to infinity in two directions. In the internal space (left) the former is

a 2-dimensional sheet surrounded by the M5, while the latter consists of a two-dimensional sheet

bounded by the M5 and also two line segments. In the spacetime of the gauge theory (right) the

first M2 is an unconfined monopole while the second is a monopole confined by two vortices. Only

the first corresponds to a nontrivial relative homology class.

If a given set of vortices confines a particle then this set of vortices is unstable and can

decay via nucleation of that particle and its antiparticle. The lifetime is exponential in the

mass of the particle, so such vortices may last for quite awhile, but because their lifetime

is finite they will carry no conserved charge. Similarly instantons may be “confined” by

particles if the corresponding 3-manifolds have boundaries off of the M5, and the particles

may decay via the confined instanton. Thus the group of conserved charges in dimension

k consists of the k-manifolds with boundaries lying entirely along the M5 (the unconfined)

quotiented by those that are themselves boundaries (the unstable). This is the definition

of the relative homology group Hk(M,Σ).

The group H3(M,Σ), which classifies instantons, is trivial for 4-dimensional SQCD,

where Σ is the logarithm of the corresponding Seiberg-Witten curve and M = R
6 × S1.

However if this theory is dimensionally reduced on a spacetime circle then the particles

of the 4-dimensional theory may wrap this circle and their dimensional reductions will

be instantons that carry a charge classified by H3(M,Σ). Such wrapping configurations

need not be instantonic, but may also correspond to a particle-antiparticle pair that is

created, circumnavigates the circle, and then annihilates leaving only a quantized flux

residue behind. If the particle was confined by a string in the 4-dimensional theory, then

the dimensional reduction of the string to 3-dimensions will be an unstable particle that

decays by the dimensional reduction of the above process.

The relative homology groups will be calculated using the long exact sequence for

relative homology

· · · jk+1
∗−→ Hk+1(M,Σ)

∂k+1
∗−→ Hk(Σ)

ik
∗−→ Hk(M)

jk
∗−→ Hk(M,Σ)

∂k
∗−→ · · · (2.2)

where i∗ is the map induced by the inclusion i : Σ −→ M , j is the quotient on chains by

the image of the M5-brane, and ∂∗ is the map induced by the boundary map.
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3. N = 4 U(3) gauge theory with strings

A 4-dimensional N = 4 U(3) gauge theory coupled to a lower-form gauge theory with a

zero-form U(3) connection and one-form field strength may be engineered from M-theory

on R
1,8 × T 2 with 3 M5-branes wrapping the T 2 ⊂ R

5 × T 2 and extended along R
1,3.

Matter corresponds to M2-branes extending between any two of the M5’s and wrapping

some subtorus of the T 2. The ordinary gauge theory dyons come from M5’s wrapping a

circle S1 ⊂ T 2 and extending along a strip whose boundary consists of a line, the particle

trajectory, along two M5’s. There are also M2-branes that wrap the entire torus and a line

segment between two branes. These are the electrically charged instantons of the one-form

theory. Finally there are M2-branes that do not wrap the torus at all but fill a 3-dimensional

strip which is a line segment between two M5’s crossed with a 2-dimensional surface along

the M5’s. This 2-dimensional surface is the worldsheet of the ’t Hooft-Polyakov string

which is magnetically charged under the abelian gauge 1-form field strength. Note that

the particles are not mutually BPS with the strings and instantons, although the strings

and instantons may be mutually BPS with each other.

The masses of the particles, tensions of the strings and actions of the instantons are

proportional to the corresponding Higgs VEVs, which are the distances between pairs of

M5’s multiplied by the volumes of the wrapped subtorii. The instanton, particle and string

each transform in the adjoint of U(3) and correspondingly each has 6 massive components

corresponding to the roots of U(3), two of which are independent corresponding to the two

simple roots. Thus the charge group is Z
2 for the instanton and string, and Z

4 for the

particle since there will be a W boson and also a monopole for each simple root.

If two of the M5’s are coincident then some of the objects become massless, but under

a slight deformation they will be massive. The classification scheme proposed in this note

only applies to configurations that are stable under slight deformations, otherwise, for

example, we would have predicted the existence of stable Douglas-Shenker strings in the

case in which two M5’s are degenerate. Homology classes that are unstable under small

perturbations of the configuration do not correspond to stable objects, instead these objects

delocalize out of existence as one approaches transitions in the moduli space. Thus we will

restrict our attention to the case in which no two M5’s are coincident.

The relative homology groups are easily computed from the exact sequence (2.2). The

homology of the internal space M is just that of the torus T 2, since the remaining R
5 is

contractible.

H0(M) = H2(M) = Z, H1(M) = Z
2. (3.1)

The M5 wraps the torus, and so the homology of each component of the M5 will also be

that of the torus, and that of the whole M5 will then be that of the torus cubed

H0(Σ) = H2(Σ) = Z
3, H1(Σ) = Z

6. (3.2)

Each M5 component wraps the torus once, and so the i∗ maps will be a copy of the identity

on each component. In particular, on H0 and H2 it will be a 3 by 1 matrix with all entries

equal to 1 while on H1 it will be a 6 by 2 matrix made of three copies of the 2 by 2 identity

identity matrix. j∗ is the zero map as it quotients chains on the torus by themselves.
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This leaves three short exact sequences

0
jk+1
∗−→ Hk+1(M,Σ)

∂k+1
∗−→ Hk(T

2)3
ik
∗−→ Hk(T

2)
jk
∗−→ 0 (3.3)

which yields

Hk+1(M,Σ) = Hk(T
2)2. (3.4)

In particular

H1(M,Σ) = H3(M,Σ) = Z
2, H2(M,Σ) = Z

4 (3.5)

matching the expectations from the field theory.

We have only classified topologically stable objects charged under the adjoint of the

gauge group, but the bulk fields lead to additional objects that are U(3) singlets. For

example the first compactified circle leads to a U(1) gauge symmetry on the remaining 5-

dimensional theory, complete with magnetic and electric charges which are realized by D6

and D0-branes respectively. Curiously these D0-branes, the U(1) electric charges, are also

the instantons of the U(3) gauge theory. Reducing on the second circle leads to a second

U(1) gauge symmetry with a new set of electric and magnetic charges, while the old U(1),

similarly to the U(3), is decomposed into an ordinary two-form Maxwell theory plus an

abelian one-form theory. The electric charges of the one-form theory are now the instantons

of the U(3) gauge theory. Each D6-brane that does not wrap the second circle, at least in

BPS configurations, leads to a flavor of quark matter in the theory. The other branes do

not lead to objects that exist in the pure gauge theory, but rather to topological charges

characteristic of one-form and mixed one-form-two-form theories. While these objects all

carry topological charges, they do not correspond to M2-branes ending on the M5-brane

and so are missed by the charge classification scheme of this note.

4. N = 2 super Yang-Mills

We next turn our attention to N = 2 super Yang-Mills with gauge group U(N), whose

bare Lagrangian in N = 1 superspace takes the form

L =

∫

d2θ
1

2e2
TrNc (W αWα) + h.c. +

∫

d2θd2θ̄
2

e2
TrNc (Φ†eV Φe−V ). (4.1)

Here Φ and W are chiral and vector superfields respectively, both transforming in the

adjoint of the gauge group.

Following the construction in ref. [21] this theory is a sector of the theory obtained by

embedding an M5-brane in the spacetime R
1,9 × S1 such that the M5 covers the physical

spacetime R
1,3 and the embedding in the internal R

6 × S1 is given by the logarithm of the

Seiberg-Witten curve [23]

y2 = P 2
N (v) − Λ2N (4.2)

where PN is a polynomial of order N

PN (v) =
1

2

N
∏

i=1

(v − φk) (4.3)

constructed from the eigenvalues φk of the adjoint scalar.
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The internal space M is R
6×S1, which we parametrize with three complex coordinates

v, w and s and one real coordinate x7. v, w and x7 parametrize the R
5 ⊂ R

6 × S1

while the complex coordinate s = x6 + ix10 parametrizes the remaining R × S1. x10 is

a periodic coordinate parametrizing the M-theory circle. For future use we define the

complex coordinate t = exp(s) which is valued in C
∗. These coordinates are related to

the Seiberg-Witten curve (4.2) via the change of coordinates t = y + PN (v). In all the

M5-brane embedding is the Riemann surface in M given by the equations

t2 − 2PN (v)t + Λ2N = w = x7 = 0. (4.4)

Dimensionally reducing to type IIA this configuration becomes two parallel NS5-branes

with N D4-branes stretched between them. The effective worldvolume theory of the D4’s

contains the gauge theory of interest.

The N = 2 theory enjoys a (2N − 2)-dimensional moduli space of vacua in which the

dyon masses are smooth functions of the coordinates. In particular configurations with

massless dyons are codimension two in the moduli space and so, as the moduli space is

connected, will not satisfy our stability criteria. Thus it will suffice to consider vacua in

which all dyons are massive. In such vacua the M5-brane consists of N separated tubes

which each wrap the M-theory circle once. All of the tubes connect at large and small

x6 to form a genus N − 1 Riemann surface ΣN−1 with two punctures at x6 = ±∞. The

integral homology groups of this Riemann surface are

H0(ΣN−1) = Z, H1(ΣN−1) = Z
2N−1, H2(ΣN−1) = 0 (4.5)

where the 2N − 1 generators of H1 are the N A-cycles that wrap the tubes and the N − 1

dual B-cycles that run down the ith tube and back up the i + 1st.

The relative homology groups may be calculated using the long exact sequence

0 = H2(R
6 × S1)

j2
∗−→ H2(R

6 × S1,ΣN−1)
∂2
∗−→ H1(ΣN−1) = Z

2N−1

i1
∗−→ H1(R

6 × S1) = Z
j1
∗−→ H1(R

6 × S1,ΣN−1)
∂1
∗−→ H0(ΣN−1) = Z

i0
∗−→ H0(R

6 × S1) = Z
j0
∗−→ H0(R

6 × S1,ΣN−1) = 0 .

The inclusion i0∗ : Z −→ Z is degree one, as the embedding maps a point to a single point,

and so the kernel of i0∗ is trivial. The kernel of i0∗ is the image of ∂1
∗ and so ∂1

∗ is the zero

map and j1
∗ is onto

i0∗ = 1, ∂1
∗ = 0, H1(R

6 × S1,ΣN−1) = Image(j1
∗) . (4.6)

Of the 2N − 1 cycles that generate H1(ΣN−1), the N A-cycles each wrap the M-theory

circle, which generates H1(R
6 ×S1), while a basis of N − 1 B-cycles is chosen such that no

B-cycle wraps the M-theory circle. Therefore i1∗ is a (2N − 1)-dimensional column vector

consisting of N 1’s and N − 1 0’s. In particular, every element of H1(R
6 × S1) is in the

image of i1∗, reflecting the fact that there is some cycle in the Riemann surface that wraps

the M-theory circle any given number of times. Thus i1∗ is onto, so j1
∗ must be the zero
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map. However we have seen the j1
∗ is onto, thus the group of vortex charges vanishes

i1∗(ai, bi) =

N
∑

i=1

ai, j1
∗ = 0, H1(R

6 × S1,ΣN−1) = Image(j1
∗) = 0 (4.7)

and there are no topologically stable vortices in the pure N = 2 theory.

The map j2
∗ has a trivial domain, and so it has a trivial image. Thus the map ∂2

∗ :

H2(R
2×S1,ΣN−1) −→ Z

2N−1 is into. The image of ∂2
∗ is the kernel of i1∗, which consists of

all N−1 B-cycles plus the (N−1)-dimensional subspace of A-cycles that wrap the M-theory

circle zero times. The fact that ∂2
∗ is into implies that this image is also its domain, the

group of particle charges H2(R
2×S1,ΣN−1). Thus there are 2N −2 independent M2-brane

worldvolumes yielding particles, of which N − 1 are bounded by the B-cycles while N − 1

are bounded by pairs of A-cycles with opposite orientations. These are just a basis of the

’t Hooft-Polyakov monopoles and the W bosons. The entire group of conserved charges,

H2(R
2 × S1,ΣN−1) = Z

2N−2 (4.8)

consists of all combinations of W bosons and ’t Hooft-Polyakov monopoles. Every such

combination has a BPS bound, given by the areas of complex surfaces (when they exist)

bounded by the corresponding cycles. Physically most of these BPS bounds are never

saturated, and the various monopoles and W bosons often repel. However the topologi-

cal classification is insensitive to this repulsion, it includes non-BPS topologically stable

configurations.

Note that there is an analogous configuration to the vortex of the N = 4 1-form

gauge theory, an M2 which extends between two tubes but whose boundary consists of

two points on the Riemann surface, rather than a cycle. However unlike the N = 4 case

this configuration does not yield a nontrivial homology class, as it may be pushed in the

±x6 direction until it is lies on the M5-brane where it may dissolve. We will argue that

this unstable vortex, rotated by 90 degrees, is an N = 2 version of the unstable axionic

vortex of ref. [3]. There is no finite-volume configuration analogous to the N = 4 1-form

instanton. These two configurations, which correspond to the physics of the 1-form theory

and not the 2-form gauge theory of interest, reappear in some vacua when we compactify

the x6 direction to introduce bifundamental matter. The gauge theory instantons arise

from momentum modes about the M-theory circle, and not M2-branes, and so are missed

by this classification.

If one adds Nf ≤ 2N −2 semi-infinite tubes that wrap the M-theory circle, correspond-

ing to the Seiberg-Witten curve

y2 =
1

4

N
∏

k=1

(v − φk)
2 + Λ2nc−nf

Nf
∏

j=1

(v + mj) (4.9)

the gauge theory will include Nf flavors of fundamental matter hypermultiplets with bare

masses mj. Correspondingly H1(Σ) will gain Nf new generators. i1∗ is already onto, and so

these extra generators imply an extra Z
Nf factor in the group of stable particles H2(M,Σ)

corresponding to the quarks. Linear combinations of all of the particles are now generically

flavored dyons.
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5. N = 1 super Yang-Mills

5.1 The N = 1 curve

We will now softly break the N = 2 supersymmetry to N = 1 by introducing a superpo-

tential W(Φ) that is degree m + 1 polynomial in the adjoint chiral multiplet Φ

L =

∫

d2θ
1

2e2
TrNc (W αWα) + h.c. (5.1)

+
2

e2
TrNc (Φ†eV Φe−V ) +

∫

d2θ
√

2TrNc W(Φ) + h.c. .

This corresponds to replacing replacing the embedding condition w = 0 of Eq. (4.4) with

[24]

w2 − 2W ′(v)w − f̃m−1(v) = 0 (5.2)

for some degree m − 1 polynomial f̃m−1 that captures quantum corrections to the super-

potential.

Eq. (5.2) is quadratic and so we have not only deformed but also doubled our original

Riemann surface, that is each point v of the N = 2 curve has split into two different points

representing the two roots of w(v) in (5.2). However in ref. [24] the authors have argued

that N = 1 supersymmetry requires that all odd-degree roots of w2 are also odd-degree

roots of y2, and vice versa. Therefore any loop will encircle an even number of roots, and

so change sheets an even number of times. Thus no path connects the two sheets, and we

may throw one sheet away, leaving the Riemann surface undoubled. If we do not throw this

sheet away we will not obtain a deformation of the N = 2 theory, but rather two coupled

copies of such a deformation.

Reducing to IIA one obtains two NS5-branes, again at different x6 positions. The NS5

on the left is at w = 0, while that on the right, which is often named NS5 ′, is at w = W ′(v).

The roots of w(v) are thus the critical points of the superpotential, while those of PN (v)

still correspond to the expectation values of the adjoint scalars. N = 1 supersymmetry

implies that the roots of PN (v) are all within a distance of order Λ of the roots of w(v). In

field theory this corresponds to the fact that the eigenvalues of the adjoint scalars are at

extrema of the superpotential up to quantum corrections of order Λ.

From the point of view of the brane cartoon this condition reflects the fact that su-

persymmetry requires the D4’s to proceed along the x6 direction without bending in the

w-plane, and so they may only connect the NS5-branes when they both occupy the same w

coordinate. The NS5 on the left is always at w = 0, so D4’s may only be placed at points

v such that the NS5 ′ is also at 0 = w = W ′(v). The distribution of eigenvalues among the

critical points of the superpotential leads to a classical breaking of the gauge symmetry

U(N) −→
k

∏

i=1

U(Ni) (5.3)

where i runs over the k critical points, which are taken to be separated by a distance much

greater than Λ to avoid exotic vacua such as those of ref. [25]. Only a finite set of points

{φk} on the Coulomb branch satisfy the N = 1 supersymmetry requirement, corresponding
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to the existence of Ni−1 independent massless dyons in the U(Ni) subsector. In particular

this means that the above stability condition no longer excludes vacua with massless states,

as it did in N = 2. In field theory terms this stability is caused by a nontrivial gluino

condensate that obstructs the deformations away from these points. It is the topology of

the condensate field that stabilizes the vortex.

The Ni D4-branes at each critical point of the superpotential lift to a single tube of

M5-brane which wraps the M-theory circle Ni times. This tube cannot split into smaller

tubes, as the distance between these tubes would give a mass to all of the dyons of their

respective gauge groups which would be incompatible with the known gluino condensate.

Thus the N = 1 super Yang-Mills M5-brane is a genus k − 1 Riemann surface Σk−1.

However the soliton spectrum is not identical to the N = k − 1 case of the N = 2 curve

because the embedding of Σk−1 into the internal space M is topologically inequivalent as

a result of the fact that the A-cycles now wrap the M-theory circle Ni times instead of

just once. In addition the embedding of the B-cycles in the spacetime now will sometimes

wrap the M-theory circle, in which case the cycle will not bound a disk in M and the

corresponding monopole will be confined. This is in contrast with the N = 2 case, where

it was always possible to concatenate a B-cycle that encircles the M-theory circle k times

with −k A-cycles to construct a new B-cycle with winding number zero. To understand

these phenomena we will consider some special cases. The case Ni = 1 is identical to that

of N = 2.

5.2 U(N) super Yang-Mills

This case has been analyzed by Witten in ref. [17]. If, up to corrections of order Λ, all

of the VEVs of the adjoint scalar are at the same critical point of the superpotential, for

example if the superpotential is quadratic and so only has one critical point, then the gauge

symmetry is classically unbroken, although quantum mechanically it will be dynamically

broken.

The Riemann surface is genus zero, with no B-cycles and a single A-cycle which wraps

the M-theory circle N times. The Witten index of this theory is N and correspondingly

there are N distinct Riemann surfaces. For example in the limit in which the adjoint chiral

multiplet mass, which is the quadratic term in the superpotential, goes to infinity one finds

vn = t, w = ζv−1 (5.4)

where ζ is an nth root of unity that labels the vacuum. The choice of root of unity

corresponds to a choice of how to identify the N x10 = 0 paths on each side of the tube,

or more precisely to cyclic permutations of the identifications of the points x10 = 0 at

x6 = +∞ and x6 = −∞. While the choice of identifications will affect the set of topological

charges in the later examples, it will not have any effect in the k = 1 case considered in

this subsection.

This Riemann surface is homeomorphic to that of the U(1) case of the N = 2 theory,

however the embedding is inequivalent as the A-cycle now wraps the M-theory circle N

times. Thus the exact sequence is identical to Eq. (4.6) but now i1∗ is multiplication by the
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x  =10 2π

x  =10 0

x  =10 4π

DS String
(Charge 1)

DS String
(Charge 2)

Figure 2: Pure U(3) super Yang-Mills is a sector of the worldvolume theory of this hourglass-

shaped M5-brane. The M5 has only one A-cycle, which winds around the M theory circle 3 times.

Douglas-Shenker strings are M2-branes at constant values of x10 that connect distinct points of the

A-cycle.

number N

i1∗ : H1(Σ0) = Z −→ H1(R
6 × S1) = Z : j 7→ Nj. (5.5)

In particular i1∗ is no longer onto, the image consists only of integers that are multiples of

N .

Physically this means that an M2-brane that winds around the M-theory circle N

times can unwind by touching the M5, opening and letting the two ends slide around the

A-cycle one time relative to each other. However a loop that winds less than N times,

while it may still open and slide around the A-cycle, only changes its winding number by

N and so can never get its winding number to zero and disappear. Thus these winding

M2-branes carry stable charges classified by ZN .

To see this from the exact sequence, recall that ∂1
∗ is the zero map. This implies that

the group of conserved vortex charges is

H1(R
6 × S1,Σ0) = Image(j1

∗) =
H1(R

6 × S1)

Ker(j1
∗ )

=
H1(R

6 × S1)

Image(i1∗)
=

Z

NZ
= ZN . (5.6)

These are the charges of the Douglas-Shenker strings. The relative homology groups cor-

respond to lines at constant x10 connecting points on the A-cycle that are at equal values

of the M-theory circle coordinate x10.

The rest of the sequence is unchanged and so, as in the N = 2 theory, there are no

topologically stable, unconfined particles. For example one may follow a cylinder that was

a W boson in the N = 2 U(N) case as the N A-cycles merge and one finds that the two

A-cycles wrapped by the ends of this cylinder no longer close [18]. Instead the circles have

been broken, and the two ends are still at the same x10 coordinate but now are separated

by 1/N of the A-cycle. While ∗G4 + C3 ∧G4 gauge-invariance does not allow an M2-brane

to break without all boundaries laying on the M5, there is a composite current-conserving

configuration that contains this broken cylinder. One may attach each broken end of the
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cylinder to a strip that continues into one of the gauge theory spacetime directions. That

is, one may attach the W boson to two Douglas-Shenker strings. Thus W bosons have

disappeared from the spectrum because they are confined. The two strings have opposite

orientations, and so the total string charge emitted from the confined W boson is zero.

Thus in this example Douglas-Shenker strings will not be able to decay via the nucleation

of pairs of W bosons, and so their corresponding charges are not screened. In fact if a

W-boson is inserted in a string worldsheet the ZN vortex charge is the same on both sides

of the W. Note that the relative charges of the two strings that end on a given W-boson

depends on the direction from which the strings approach, as this determines the relative

orientations of the M2-branes in the gauge theory directions.

5.3 U(N + 1) −→ U(N) × U(1) super Yang-Mills

This configuration is identical to that of the previous subsection except that now there is

an extra tube of M5 that wraps the M-theory circle once. The v position (adjoint scalar

VEV) of this new tube is a different critical point of the superpotential than the point used

by the original tube. Now there will be a second A-cycle, which goes around the new tube

once, on which i1∗ acts by multiplication by one.

There are now massive W bosons corresponding to cylindrical M2-branes whose two

boundary circles, one of which is on each A-cycle, each wrap the M-theory circle once. As

in the previous example, the boundary on the U(N) A-cycle fails to close, and to make it

close a vortex must be inserted. Thus each W boson is confined by a single U(N) Douglas-

Shenker string and in turn each Douglas-Shenker strings may decay via the nucleation of

a W-anti-W pair. The lifetime of such strings is then exponential in the W mass, which is

proportional to the distance between the two critical points of the superpotential. Notice

that N W bosons may come together to form an unconfined glueball, as the N vortices

confining them may annihilate each other. This glueball corresponds to a cylindrical M2

whose boundary circles wrap the U(N) A-cycle once and the U(1) A-cycle N times. As

both winding numbers are integral, both boundaries close.

We may construct the B-cycle by connecting the two paths that connect the tubes to

paths that run down the two tubes at constant values of x10. A choice of B-cycle exists

such that x10 is constant along the whole cycle and so the B-cycle is a boundary in the

internal space. We will refer to the bounded disk as the monopole or (1, 0)-dyon.

Summarizing, the set of conserved particle charges is identical to the case of a U(2)

N = 2 theory, although the minimum charge of an unconfined W boson is higher in the

N = 1 case. The set of particle charges is generated by the charge 1 monopole and a charge

N bound state of W bosons. No decay modes for particles have been found, and so the

particle charge group is expected to be Z
2. Similarly the vortices can decay via W boson

pair production, and so the vortex charge group is expected to be the trivial group 0.

This may be compared against the relative homology groups obtained using the long

exact sequence. Everything is as before, except now the inclusion map is

i1∗ : H1(Σ1) = Z
3 −→ H1(R

6 × S1) = Z : (a1, a2, b) 7→ Na1 + a2. (5.7)
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DS String

DS String
(Charge 2)

(Charge 1)

W boson
(Confined by a U(3) DS String)

(Confined by a Charge 2 U(3) DS String)

(1,2)−dyon

Figure 3: Pure U(3) × U(1) super Yang-Mills is a sector of the worldvolume theory of this M5-

brane, which is topologically a torus with two punctures. The M5 has two A-cycles, a U(3) cycle

that winds around the M theory circle 3 times and a U(1) cycle that wraps once. There is also a

B-cycle that does not wrap the M theory circle. W bosons are confined by the Z3-charged strings

of the U(3). In the r = 0 vacuum, drawn here, the (1, 2)-dyon is confined by a charge 2 string

and the monopole is unconfined. In the r = 2 vacuum the monopole would be confined, and would

correspond to the above yellow region.

That is, the inclusion map is matrix multiplication by the column vector (N, 1, 0). Here

a1, a2 and b are the U(N) A-cycle, the U(1) A-cycle and the B-cycle respectively. As in

the N = 2 case i1∗ is onto and so j1
∗ is the zero map, which again implies that there are no

nontrivial topological charges for vortices

H1(R
6 × S1,Σ1) = 0. (5.8)

The kernel of i1∗ consists of all triplets (a1, a2, b) ∈ Z
3 = H1(Σ1) such that Na1 + a2 = 0.

This is just Z
2, as each choice of a1 and b yields precisely one possible value of a2, namely

a2 = −Na1. j2
∗ is the zero map and so ∂2

∗ is an isomorphism between this kernel and the

particle charge group H2(R
6×S1,Σ1). Therefore the group of conserved particle charges is

H2(R
6 × S1,Σ1) = Image(∂2

∗) = Ker(i1∗) = {a1, a2, b|Na1 + a2 = 0} = Z
2 (5.9)

in line with the above field theory expectations.

The U(N) sector has a Witten index of N , and so there are N different equivalent

vacua, which we will parametrize by a number r. In the rth vacuum the B-cycle will wrap

the M-theory circle r times, so the monopole will be confined by a charge r string. The

(1,−r) dyon, on the other hand, will not be confined, nor will a bound state of lcm(r,N)
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Figure 4: MQCD curve for U(6) → U(4) × U(2).

monopoles where lcm is the least common multiple. The charge group of the strings is

independent of the naming convention of the dyons, and so it is the same for all vacua.

In the general case the confinement pattern will depend nontrivially on the choice of r.

In ref. [19] this r-dependent vortex decay via monopole pair creation was refered to as

magnetic screening.

5.4 U(6) −→ U(4) × U(2) super Yang-Mills

Next we will consider a case in which the gauge symmetry is classically broken from U(6) to

U(4)×U(2) (see figure 4), where the two components reside at two extrema of, for example,

a cubic superpotential. As in all N = 1 pure Yang-Mills theories there will be a further

dynamical symmetry breaking to an abelian group, and it is this symmetry breaking which

leads to the existence of discrete vacua. In this case the vacua are labeled by two numbers

r1 and r2, the first of which runs from 1 to 4 and the second from 1 to 2. In addition there

are two kinds of Douglas-Shenker strings, those of the U(4) and those of the U(2), which

we will call 4-strings and 2-strings respectively.

At energies much lower than the separation between the two critical points of the

superpotential, this theory reduces to two decoupled pure super Yang-Mills theories with

gauge groups U(4) and U(2). Thus bound states of 4 4-strings or 2 2-strings decay rapidly.

There are W bosons whose masses are proportional to the separation between the critical

points. These correspond to cylinders whose two bounding circles each travel a distance

2π in x10 along one of the two A-cycles. The two A-cycles now wrap the M-theory circle

2 and 4 times respectively, thus neither of the circles that bounds the cylinder closes. To
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make a gauge-invariant M2 configuration we may attach each end of the cylinder to one

of the Douglas-Shenker strings of the corresponding A-cycle. Thus the W bosons that

are charged under the bifundamental of the U(4) × U(2) are confined by a 2-string and a

4-string. This means that the nucleation of a pair of such W bosons may cause a 2-string

to be turned into a 4-string, or vice versa. As a result the charge (1, 1) in the maximal

vortex charge group Z4×Z2 is not conserved. The largest possible conserved vortex charge

group is then

Z2 =
Z4 × Z2

{(0, 0), (1, 1), (2, 0), (3, 1)} . (5.10)

One may then ask whether the Z2 charges themselves are conserved. The W bosons

appear to conserve them, but monopole pair creation may not. A charge 1 monopole is

confined by r1 4-strings and r2 2-strings, for a total charge of r1 + r2 ∈ Z2. Therefore

monopoles are confined by a vortex with nontrivial charge in the remaining Z2 when r1 =

r2 + 1 mod 2, and so in this case all Douglas-Shenker strings are unstable and monopoles

are confined into charge 2 magnetic baryons, which in turn may be bound to W bosons or

other monopoles if it is confined by the Z4 group that was broken by the W bosons. On

the other hand if r1 = r2 mod 2 then the Z2 string quantum number is preserved. For

example in the vacuum r1 = 0, r2 = 0 the monopole is unconfined. On the other hand in

the vacuum r1 = 2, r2 = 0 the monopole is confined by a charge 2 4-string which carries

no Z2 charge, while a charge 2 monopole is unconfined, as is a bound state of a charge 1

monopole and two W bosons.

This spectrum can be read from the usual exact sequence, again with H1(Σ1) = Z
3

but now with the induced inclusion map

i1∗ : H1(Σ1) = Z
3 −→ H1(R

6 × S1) = Z : (a1, a2, b) 7→ 4a1 + 2a2 + (r1 − r2)b. (5.11)

which is onto precisely when r1 − r2 is odd. Therefore the vortex charge group H1(R
6 ×

S1,Σ1) is Z2 when r1 − r2 is even and 0 when r1 − r2 is odd, while the particle charge

group H2(R
6 × S1,Σ1) is again Z

2.

5.5 The general case

In general the superpotential may classically break the gauge symmetry to a product of

groups U(Ni), 1 ≤ i ≤ k. By now we have seen that the exact sequence calculation of the

topological charges always leads to a particle charge group

H2(R
6 × S1,Σk−1) = Z

2k−2 (5.12)

where k − 1 of the generators are elementary W bosons corresponding to simple roots of

U(k) and the other k − 1 are the elementary ’t Hooft-Polyakov monopoles. There can be

no torsion elements as j2
∗ is the trivial map and there is no torsion in

H1(Σk−1) = Z
2k−1. (5.13)

In addition ∂1
∗ is the zero map and so the group of topological charges carried by particles

is determined by the map

i1∗ : Z
2k−1 −→ Z : (a1...ak, b1...bk−1) 7→

∑

i

Niai + (ri+1 − ri)bi (5.14)
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Figure 5: MQCD curves for U(4) → U(2) × U(2). The first represent the monopole-monopole

vacuum where the B-cycle is trivial in H1(R
6 × S1) an so we have Z2 Douglas-Shenker string. The

second curve represent the monopole-dyon vacuum where the B-cycle wind once in the M-theory

circle and so we have no topological stable string.

whose image is

Image(i1∗) = gcd(Ni, ri+1 − ri)Z. (5.15)

This image of i1∗ is the kernel of j1
∗ which determines the group of particle charges

H1(R
6 × S1,Σk−1) =

H1(R
6 × S1)

Ker(j1
∗ )

=
Z

gcd(Ni, ri+1 − ri)Z
= Zgcd(Ni,ri+1−ri)

. (5.16)

In figure 5 we see how the B-cycle can affect the stability of Douglas-Shenker strings. Notice

that the cardinality t of the group H1(R
6 × S1,Σk−1) is the confinement index, which is

the minimal charge of an unconfined monopole, computed in [19]. The charge t monopole

is confined by t vortices, which carry a charge of t ∈ Zt, which is equivalent to zero modulo

t and so the monopole is unconfined.

6. N = 1 U(N) theory with flavored matter

6.1 Super QCD: a global flavor symmetry

In general the inclusion of matter leads to an instability of all Douglas-Shenker strings and

often to the existence new, nontorsion, stable vortices. However we will see that sometimes

theories with a gauged flavor symmetry can have stable Douglas-Shenker strings in certain

vacua in which all bifundamental quarks have a bare mass.

We begin with the simplest case of fundamental matter that transforms in the fun-

damental representation of a global U(Nf ) flavor symmetry. The corresponding N = 2

theory is described by the Seiberg-Witten curve (4.9) which again describes an M5-brane
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extending along the gauge theory directions R
1,3 and a Riemann surface Σ ⊂ M . In the

IIA reduction this corresponds to the addition of Nf semi-infinite D4-branes, which we will

call flavor branes, that extend from the NS5 ′ to x6 = +∞. If two flavor branes are coin-

cident then there is an enhanced flavor symmetry, but arbitrarily small perturbations will

separate the branes at sufficiently large x6 and so a classification of stable configurations

requires that all of the bare quark masses, that is all of the flavor brane positions on the

v-plane, are distinct.

Softly breaking the supersymmetry to N = 1 with a superpotential, there is now

a choice of two supersymmetric configurations for each of the N color D4-branes that

extended between the NS5’s before the deformation. Each color brane may either move

along v to an extremum of the superpotential as in the previous section, or else it may

connect to a flavor brane. We will ignore configurations in which a color brane touches

both a flavor brane and the NS5 ′. If a color brane located at some v is connected to a

flavor brane on one end then the two NS5’s no longer need to be coincident in the w-plane,

as the D4-branes at v no longer connect them. The minimum distance between the NS5 ′

and the locked color-flavor D4-brane pair is the VEV of the meson field corresponding

to mesons built from quarks that extend between the now locked color and flavor brane.

These meson VEVs Higgs the color symmetry on the locked branes, and so the remaining

classical gauge symmetry group U(N1)× ...×U(Nk) has a number of components equal to

the number of minima of the superpotential at which unlocked color branes reside. Thus

k again is the number of tubes of the Riemann surface which connect the two NS5’s, and

so k − 1 is again the genus of Σ.

While the genus of the Riemann surface is the same as in the unflavored case, the

number of punctures when one deletes the points at infinity [26] is now Nf + 2 instead of

just 2 as in pure super Yang-Mills. This changes the first homology group of the Riemann

surface to

H1(Σ) = Z
2k+Nf−1 (6.1)

where the new Nf generators are loops that circle the flavor branes. The inclusion map

i1∗ multiplies these new generators by the number of coincident flavor branes at each bare

mass, which is one. Therefore the inclusion map is onto and again j1
∗ is the zero map,

i1∗(a1...ak, b1...bk−1, c1...cNf
) =

∑

i

Niai + (ri+1 − ri)bi + ci, j1
∗ = 0. (6.2)

However the triviality of j1
∗ no longer implies that the group of vortex charges is trivial,

because as we will now explain j1
∗ is no longer onto as ∂1

∗ is no longer necessarily the zero

map.

The fact that flavor branes extend to x6 = +∞ with x7/x6 → 0 gives a fixed notion of

the x6 direction, and so in particular a relative rotation of the two NS5-branes on the x6−x7

plane may no longer be absorbed into a coordinate redefinition. Correspondingly in the

presence of fundamental matter a Fayet-Iliopoulos (FI) term may no longer be eliminated

by a field redefinition. The FI term, r, corresponds to the x7 coordinate of the NS5 ′. All

of the color D4’s extend in the x6 direction but must remain at constant x7 to preserve
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supersymmetry, otherwise they would not be parallel to the flavor D4-branes. Thus when

r 6= 0 all of the color branes extend from the NS5-brane to x6 = +∞ without touching

the NS5 ′, and so every color is locked. This does not imply that all flavors are locked,

unlocked flavors remain at a constant x7 = r as they extend from the NS5 ′ to x6 = ∞. As

every brane occupies a constant x7 position, if the two NS5’s are at different x7 positions

then the entire configuration is disconnected. In general a high energy gauge symmetry

consisting of j gauge group components may be engineered using j + 1 NS5’s and if the

FI terms are independent then the entire configuration will consist of j + 1 independent

components.

We will now restrict attention to configurations with only two NS5’s and so at most

two components. Thus H0(Σ) will be Z
2 if all colors are locked, but if any color is unlocked

then the corresponding D4 connects the two components of the M5 and so H0(Σ) = Z.

The spacetime is still connected and so H0(R
6×S1) = Z as in pure super Yang-Mills. This

means that the map i0∗ is no longer into when all colors are locked, instead i0∗ = (1, 1), and

so as suggested above ∂1
∗ 6= 0. On the contrary the image of ∂1

∗ is the kernel of i0∗, which is

the additional Z component. This Z must then appear in its domain, the group of vortex

charges

H1(R
6 × S1,Σ) =

{

Z if all colors are locked

0 if any color is unlocked.
(6.3)

Thus while the Douglas-Shenker vortices may decay via the nucleation of fundamental

matter, new nontorsion vortices arise in some cases. Such vortices have been studied for

example in refs. [6 – 10], where it was seen that monopoles in a theory with an FI term

are confined by two vortices. This means that such a vortex cannot decay by monopole-

antimonopole nucleation as monopoles are merely kinks in vortex worldvolumes. Rather

than terminating a vortex, these kinks transmute a vortex into a different type of vortex

that carries the same conserved charge.

The vortices studied in refs. [11 – 16], in theories with a superpotential rather than

an FI term, are not topologically stable as some of the colors are unlocked. As a result

there are monopoles confined by a single vortex whose pair creation causes these vortices

to decay (In figure 6 we have an example of this kind). This does not imply that an FI

term is required for stability. The vortices of those theories would have been stable had one

not included the unlocked color, in which case the 1-monopoles would have been removed

from the spectrum. Alternately one could have added a new flavor with a different bare

mass and changed the adjoint scalar VEV of the unlocked color to the bare mass of the

new flavor, locking them together. The resulting ’t Hooft-Polyakov monopoles would have

been confined by two vortices and thus would not have led to magnetic screening. Note

that unlike the vortices of ref. [6], such vortices are not be BPS, but the topological charge

is nonetheless conserved. In conclusion, matter that transforms in the fundamental of a

global flavor symmetry screens Douglas-Shenker string charge, but when the M5-brane is

disconnected a new kind of vortex is stable.

The group of particles is also augmented as a result of the extra Z
Nf in Eq. (6.1). As

the dimension of H1(R
6 ×S1) is still Z, the extra dimensions must come from the group of
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Figure 6: MQCD curve for U(2) gauge theory with one flavor. The second curve represent the

color-flavor locking vacuum.

particle charges

H2(R
6 × S1,Σ) = Z

2k+Nf−2. (6.4)

The extra Nf independent particles are the quarks with a given color. A quark of a different

color will not carry an independent charge, as its charge is carried by a boundstate of a

quark of the given color and a W boson.

6.2 A local flavor symmetry

The Douglas-Shenker strings of super QCD are unstable because each quark is defined by

a single string, and so a pair of quarks produced on the string leads to a gap which grows

until the string has disappeared. Topologically this reflects the fact that i1∗ is onto because

each flavor brane wraps the M-theory circle once and so i1∗ multiplies the quark charges by

one.

The situation is quite different if the flavor symmetry is gauged and confining. In

this case there will be two species of Douglas-Shenker strings, those of the color group

and those of the flavor group. A quark will be confined by one of each, and so quark

pair-productions, like W boson pair-production in SYM, will only cause vortices to be

transmuted into different types of vortices rather than to disappear altogether. For example

a confining U(N) color symmetry and U(M) local flavor symmetry lead to ZN charged and

ZM charged vortices. A ZN vortex becomes a ZM vortex when one crosses a quark, and so

in particular the charge M ZN vortex is unstable. As in the case of U(M) × U(N) super

– 20 –



J
H
E
P
0
3
(
2
0
0
6
)
0
2
3

Yang-Mills, the group of conserved charges is then

H1(R
6 × S1,Σ0) = Zgcd(M,N) (6.5)

where Σ0 is the lift of three NS5-branes, one pair connected by N D4’s and the other by

M D4’s. Topologically this is a result of

i1∗(a1, a2) = Ma1 + Na2 (6.6)

whose cokernel is Zgcd(M,N), just as in the case of pure SYM with low energy gauge group

U(M) × U(N) where the W bosons play the role played by the quarks here.

This is not to suggest that gauging the flavor symmetry always stabilizes some of the

Douglas-Shenker strings. For example if any classically unbroken gauge subgroup U(Nc)

is in its baryonic root vacua then locally Σ factorizes into two funnels which intersect

at 2Nc − Nf distinct points. The loop which begins at one intersection, travels along

one sheet to the next, and then returns along the other sheet wraps the M-theory circle

precisely once. Thus the image of the corresponding generator of H1(Σ) will be the element

1 ∈ H1(R
6 × S1). This means that i1∗ is again onto and no vortices carry any conserved

topological charge. The confined particle must correspond to an M2 that has a boundary

that encircles this loop, although it may then encircle a second loop which gives it a net

winding number around the M-theory circle of zero. If the net winding number is zero then

the M2 could have disk topology which would allow the particle to be a hypermultiplet

[27, 26]. This theory contains flavored magnetic monopoles, which in the Seiberg dual IR

free theory become unconfined quarks, and so do not connect to strings.

When the flavor symmetry is gauged, for example in the Klebanov-Strassler theory

[28] in which x6 is periodic, the UV theory may be strongly coupled and in fact potentially

continues to cascade. However the above confined particles exist at each Seiberg duality,

as the above cycle may be constructed each time the two M5-brane sheets pass each other.

Thus the vortices confine particles at the energy scale of each step in the cascade, and

the vortices will be broken by the lightest particles which come from the last step of the

cascade.

6.3 Gubser-Herzog-Klebanov axionic vortices

Gubser, Herzog and Klebanov have conjectured [3] the existence of a new kind of vortex

in the Klebanov-Strassler SU(N + M) × SU(N) theory. This corresponds to a D1-brane

on the conifold which extends in the gauge theory directions. It does not extend in any

internal directions, and so after T-dualizing an internal direction to arrive in IIA it will be

a D2-brane extending along the T-dual circle, x6. Lifting to M-theory one finds an internal

spacetime of R
5 ×T 2, as in the N = 4 example above. As usual in the IIA reduction there

are two NS5-branes, which are at two different coordinates on the x6 circle.

There are now two inequivalent embeddings of the D2-brane extended along x6 and

two gauge theory directions. It may either wrap all of x6, or else it may extend between

two NS5’s. In the first case it will be T-dual to a D-string, while in the second it will

be T-dual to a half D-string at the conifold singularity which blows up into a D3 when
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the conifold is resolved. Both of these branes are non-BPS, as they share three common

directions with the D4-branes. In fact both kinds of brane attract the D4-brane, and once

they become coincident will dissolve into the D4. In the D4 worldvolume theory these are

magnetic flux tubes. The first brane carries a unit of magnetic flux in both gauge groups

while the second carries flux in only one. These flux tubes will smear out of existence unless

they are confined for some reason, for example if they really are vortices in an unexpected

condensate field in the D4 worldvolume. In the large N IIB description perhaps the large

N limit, which places them far from the horizon’s D3-branes that are T-dual to the D4’s

here, leads to a long lifetime for these strings.

The possibility that these D2’s may dissolve into the D4’s follows from the topological

classification above. There is no extra Z component in the group of vortex charges that

could stabilize these axionic string charges. In fact the M5-branes of these models are

connected, and so there are no vortices at all carrying topological charges of the type

classified in this note.

At distance scales much smaller than the size of the smallest A-cycle, corresponding

to the SU(K) theory at the bottom of the cascade, one may ignore the D4 and so miss the

instability of these vortices. The decay is caused by the nucleation of degrees of freedom

from the SU(K + M)× SU(M) UV completion and so involves the nucleation of particles

of mass equal to the UV cutoff. Similarly the characteristic lifetime of the vortices will be

exponential in the UV cutoff. This is in contrast with the case of ordinary SU(K) pure

super Yang-Mills, which is asymptotically free. The SU(K) theory at the bottom of the

cascade is not asymptotically free. The fact that both SU(K) theories are in the same

universality class does not preclude the existence of stable vortices in one theory and not

the other, as the topological stability of a configuration depends on the UV physics.

7. Conclusions

In field theories that can be engineered from M5-branes the relative homology groups of

the embedding of the M5 yield conserved charges. In particular we have reproduced the

confinement index formula of ref. [19] and we have found the charges corresponding to

torsion Douglas-Shenker strings as well as BPS Hanany-Tong strings. Strings obtained,

for example, by softly breaking N = 2 SQCD to N = 1 with a mass for the adjoint chiral

multiplet are found, as expected, to be unstable. However the conservation of the homology

charge led us to conjecture that such vortices may be stabilized by adding a correction

to the superpotential that leads the corresponding M5 to be disconnected. Further we

have seen that the M5 always is disconnected, and so the vortices are always stable, in

supersymmetric backgrounds with a nonzero FI term and any superpotential. In both the

superpotential and FI cases the disconnected M5 only preserves supersymmetry if all colors

are locked to flavors.

Noticably absent from the spectrum of stable vortices is the GHK axionic string. We

have T-dualized the conifold realization of this string to a IIA brane cartoon. In doing

so we have found that there are in fact two species of this string and that both can be
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continuously deformed into the M5-brane, where no charge that we have seen prevents

them from smearing into oblivion.

The topological charge construction considered here, and first proposed in ref. [17],

applies to a wide variety of theories. For example the index of confinement can easily

be calculated for theories with various kinds of fundamental and bifundamental matter.

Usually the index will be trivial in these cases. However we have seen that in some theories

in which the flavor group is gauged and confining some of the Douglas-Shenker strings are

stable and so the confinement index will not be trivial.

The construction itself is much more general than this, allowing treatment of gauge

theories in various numbers of dimensions and even of higher (lower) form gauge theories

as in the N = 4 example above. The only critical assumption was the validity of the

supergravity approximation, and in particular the classical treatment of the geometry. This

is a weaker condition than the supersymmetry of the configuration, for example we have

found non-BPS torsion strings and also dyons that cannot satisfy the BPS bound. However

we have not found a criterion that allows one to determine when this approximation applies.

One may attempt to use relative homology to classify the charges of objects in the

presence of a domain wall, which is a 3-dimensional cobordism that interpolates between

two M5 embeddings Σ. Objects with a boundary on the domain wall will be bound to the

wall.
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